QHny) Designation: C 970 — 87 (Reapproved 1997)

Standard Practice for
Samgling Special Nuclear Materials in Multi-Container
Lots

This standard is issued under the fixed designation C 970; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilonej indicates an editorial change since the last revision or reapproval.

1. Scope 3.2 confidence interval(a) an interval estimatorused to

1.1 This practice provides an aid in designing a samplind®ound the value of a population parameter and to which a
and analysis plan for the purpose of minimizing random errofn€asure of confidence can be associated, Bnth¢ interval
in the measurement of the amount of nuclear material in a logStimate based on a realization of a sample drawn from the
consisting of several containers. The problem addressed is tR@pulation of interest, that bounds the value of a population
selection of the number of containers to be sampled, th@arameter [with at least a stated confidence].
number of samples to be taken from each sampled container, 3-3 Estimation, Estimator, Estimate B _
and the number of aliquot analyses to be performed on each 3-3-1 Estimation in statistics, has a_specmc meaning, con-
sample. siderably different from the common interpretation of guess-
1.2 This practice provides examples for application as welind; playing a hunch, or grabbing out of the air. Instead,
as the necessary development for understanding the statistig§imation is the process of following certain statistical prin-
involved. The uniqueness of most situations does not alloiPIes to derive an approximation (estimate) to the unknown
presentation of step-by-step procedures for designing samplir}@"ue of_a popu!atlon parameter. This estimate is based on the
plans. It is recommended that a statistician experienced ififormation available in a sample drawn from the population.
materials sampling be consulted when developing such plans. 3-4 estimator—a function of a sampleX;, X;, ..., X;) used
1.3 The values stated in Sl units are to be regarded as tH@ estimate a population parameter.
standard. Note 1—An estimator is a random variable; therefore, not every
1.4 This standard does not purport to address all of therealization &, X,, ..., %) of the sample X;, X, ..., X,) will lead to the
safety problems, if any, associated with its use. It is thesame value (realization) of the estimator. An estimator can be a function
responsibility of the user of this standard to establish appro_that, when evaluated, results in a single value or results in an interval or

priate safety and health practices and determine the app”(:a[egion of values. In the former case the estimator is callepot

- P - estimator, and in the latter case it is referred to asnéarval estimator.
bility of regulatory limitations prior to use. T _ _
3.5 estimate, (an)—a particular value or values realized by

2. Referenced Documents applying an estimator to a particular realization of a sample,
2.1 ASTM Standards: that is, to a particular set of sample valugg &, ..., %,). (b:
E 300 Practice for Sampling Industrial Chemicals Vv)—to use an estimator.
2.2 Other Standard: 3.6 nested design- one of a particular class of experimental
NUREG/CR-0087, Considerations for Sampling Nucleardesigns, characterized by “nesting” of the sources of variation:
Materials for SNM Accounting Measureme?its for each sampled value of a variabld, a given number of
values of a second variablkis sampled; for each of these, a
3. Terminology Definitions given number of values of the next varial@lds sampled, etc.

3.1 analysis of variance-the body of statistical theory, The result is that each line of the “Expected Value of Mean
methods, and practice in which the variation in a set ofSquare” column inan analysis of variance table contains all but
measurements, as measured by the sum of squares of thee of the terms of the preceding line.
measurements, is partitioned into several component sums of 3.7 random variable— a variable that takes on any one of
squares, each attributable to some meaningful cause (sourcetbg values in its range according to a [fixed] probability
variation). distribution. (Synonyms: chance variable, stochastic variable,

variate.)

_ o N _ 3.8 standard deviatiotfs.d.)—the positive square root of the
1 This practice is under the jurisdiction of ASTM Committee C-26 on Nuclear yariance

Fuel Cycle and is the direct responsibility of Subcommittee C26.06 on Statistical . i
Applications. 3.9 variance—(a: populatior) the expected value of the

Current edition approved Jan. 30, 1987. Published March 1987. Originallysquare of the difference between a random variable and its own
published as C 970 —82. Last previous edition C 970 - 82. expected value; that is, the second moment about the ntean. (

2 Annual Book of ASTM Standagdgol 15.05. | h f .. f h |
3 Available from National Technical Information Service, Springfield, VA 22161, S&MP ¢ The sum of squared deviations from the sample mean

Copyright © ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.
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divided by one less than the number of values involved. where:
4. Significance and Use 0y 2 = true variance_ among_tlhe Nzcont_%iners i2n the
| ; i d vsis of | terial given lot, defined aBl™"2p ;- N"“(Zp,)5
4.1 Plans for sampling and analysis of nuclear materia arecsz — true variance among samples taken from a

designed with two purposes in mind: the first is related to

: -+ _ . single container,
material accountability and the second to material spemﬂca-(,az — true variance of the laboratory analysis on
tions.

. . i , a homogeneous sample, and
4.2 For the accounting of special nuclear material, samplingN — n = finite population correction factor.

and analysis plans should be established to determine thg — 1
quantity of special nuclear material held in inventory, shipped Nore 2—if the ith container hagy, grams of material, then the true
between buyers and sellers, or discarded. Likewise, materialverage concentration B,“w,p ;, wherew, = g /=," g,. However, the
specification requires the determination of the quantity ofvarianceof the corresponding estimate can still be calculated as shown in
nuclear material present. Inevitably there is uncertainty assdbis guideline; the true variance will be only slightly larger if tevalues
ciated with such measurements. This practice presents a to‘é)\‘i/’e’:gtd'ﬁei; E:O:nrggcgho':v‘v’; ‘t’r’]‘:l‘t”:ﬁ'ee’s';the Nja‘tlgfb%‘ngs;i%’;‘;g‘z
for developing s_ampllng p_Ians that control the random erroﬁboutg;%/; of the true standard deviaiio.n':;) f9s having s.d.’s of 10 % ory
component of this uncertainty. _ 30 % of their average, the underestimation is 0.5 % or 4.5 % respectively.

4.3 Precision and accuracy statements are highly desirablRote that a set of 25 weightg, uniformly spread from 3.3 to 6.7 kg, has
if not required, to qualify measurement methods. This practice s.d. equal to 20 % of the average (5 kg). (It is assumed that errors in the
relates to" precision” that is generally a statement on theestimation of net weights are insignificant compared to differences
random error component of uncertainty. Eemlien containers, sampling variability, and analytical uncertainty, or

otn.

5.3 Since the true variances?, o2, ando,? are generally
unknown, they may be estimated using appropriate data. Those

5.1 The random error component of measurement uncegata can be historical data obtained from analyzing production
operation such as weighing, sampling, and analysis. Thgjth time. If such data are not available, as for example during
quantification of the random error is usually given in terms ofthe start-up of a facility or after a change in process conditions,
the variance of the mean of the measurements. When analyziRgdesigned experiment is required to obtain estimates of the
a lot of nuclear material to estimate the true concentrafion, yariance<

of a constituent such as uranium, the sample mpais the 5.4 An estimates ;° of the variance of the sample mean can

calculated estimator. The variancefo 5 , is @ measure of pe obtained from Eq 3, by inserting estimates of the variances

the random error associated with the measurement procesgppearing there. If a designed experiment is performed, the

This practice deals primarily with random error; measuremengstimates can be obtained from the mean squares.

process systematic error will be discussed briefly in 8.2. It is shown in Appendix X1 that estimates of the variances
5.2 To estimate the true concentratipnjn a lot consisting  gre as follows:

of N containers using a completely balanced nested design, )

randomly selecn of the N containers; from each of the S =MS, @

containers, randomly seleat samples; performi laboratory 2

1
analyses on each of tham samples. (It is assumed that the &7 =7 (MS— MS), ®)

5. Designing the Sampling Plan—Measuring Random
Error

amount of material withdrawn for samples is only a small 5 -1
fraction of the total quantity of material.) Let % = Nmr MS —MSy), ©)
X = measured concentration of the constituent inkkie analysis where:

on thejth sample from theth container, or MS, MS,, and MS; are the “mean squares” for analyses,
=pEbts . () containers and samples. The estimated variancp isf ob-

where: tair}ed by replacing the true variances in Eq 3 by their

p = true concentration, estimates:

b; = effect due to container , IN-n , 1 , 1

s; = effect due to thg" sample from container, and S TAN=—1% T amSs T amr Q)

ay, = effect due to th&™ analysis on thg™ sample from

Finally, expressed in terms of the mean squares, this be-

container. mes

; . . COo
Then, if each container holds the same amount of material,
(Note 2), the sample mean

p= X= — i % é X. @ 4This topic can be found in many standard statistical texts, for example,
nmr; <4 £1¢=1 ik Brownlee, K. A.,Statistical Theory and Methodology in Science and Engineering
. . . . 2nd ed., John Wiley and Sons, New York, 1965; Bennett, C. A., and Franklin, N. L.,
is an estimator of the true VaILFE Thetrue variance Ofﬁ IS Statistical Analysis in Chemistry and the Chemical Indysiohn Wiley and Sons,
then New York, 1954; Mendenhall, William|ntroduction to Linear Models and the
Design and Analysis of ExperimenBuxbury Press, Belmont, CA, 1968; and in

2 2 2
2_09b (N-n) Os i Ta ®) Jaech, J. L., "Statistical Methods in Nuclear Material Control,” (TID-26298,
% “Tn N—1 " nm " nmr USAEC, 1973).
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»_ 1 N-n MS. - 1 MS ®) a stated confidence interval width reduces to finding a suitable
$ “amr TN b Nmr ™7s set of values fon, m,andr. In Appendix X2 it is shown that

5.5 The variance of the sample means?, or its estimates ~ the optimumr andm are given by

p°, is used to calculate confidence limits for the quantity and 0, [C\1/2
concentration of nuclear materials. Therefore, it is desirable to o (C_a\) ()
reduce this variance and, in this way, reduce the random error. o (G N — 1\1/2
Obviously, this can be done by using large values,ah,and m=3, (gs T) (12)
r (large number of samples and laboratory analyses). The cost
and time required by that approach could be prohibitive. where: ) ) N )
Another approach is to improve the overall process such thafs = marginal cost of choosing one additional container
the basic variances,?, o2, 0,2 are reduced. and preparing it for sampling,

5.6 Eq 8 gives an estimate of the variadm*ﬁéfor any given C, = margl_nal cost of draw_lng an addltlona_l sample from a
n, m,andr and therefore can be used for comparing different container and preparing it for analysis, and

sampling plans. An example of two sampling plans involving a_ = marginal cost of an additional laboratory analysis.

the same number of analyses but having different random TNerefore, the optimum values foandm do not depend on

errors is given in Appendix X3. n, and in f%ct can be calculated immediately from the vari-
5.7 When one has fixed resources within which the sam@MCes, the “costs,” anil. _ _ _

pling plan must function, the question arises as how to allocate, 6-2-3 Oncanandr are determined and inserted into Egs3,

these resources to obtain the “best” sampling plan. Sections® IS S€€n to be a monotonic decreasing functiom,afo that

and 7 discuss this problem when “cost” is considered. “Cost®N€ need only make large enough to achieve the required

2 . _ _ _ .
is used generically here—it need not be a monetary quantity; f0UNd oo 5 (Note 3). Lettingcs = ¢, = ¢, = 1.0 provides the
could be time or something else. optimum values of, m, andn when costs are considered equal.

In practice, the optimum values fon andr obtained this way
are unlikely to be integers. Unless these values are very close

6. Determining Sample Sizes - ,_ , >
o . . . _tointegers, itis prudent to consider both bracketing values, that
6.1 There are two common situations in which samplmgi& if the optimum value for is 1.4, try bothr = 1 andr = 2.

plans must be developed for use in nuclear material MeasUretq reason is that the final valuerowill generally be different
ment when there are constraints on resources. In the f'r%tnd it is not clear beforehand which set of values. af. and
situation a constraint is imposed upon the “cost” of samplmgn will achieve the required variance at minimum cost. It is also

a’?d_ af‘a'yst';‘- In Fh's casfe;h the prolblem Is to _f'F‘d_a plan éh%ossible to use different valuesmf(or r, or both) for different
minimizes the variance of the sample mean (minimizes randorl, \ainers or samples, or both, to obtain a non-integer “effec-
error) subject to the cost constraint. In the second situation, five” value of m (or r, or both). In this casep should be

constraint is imposed upon the variance of the sample me%placed by a weighted average:.2 becomes more compli-
(u'pc.)n.the random erfor) and the problem.|s to fl'ndapla'\n Wh'dﬁated' and the expected value;3 of the mean squares also
minimizes cost subject to this constraint. Since this Iatterbecor’ne more complicated, as does the estimateiéf The

problem is the most frequently encountered, methods for itg , . TS e .
solution will be given. The former problem, for which the %g?ﬂ;ecgfniiﬁg'c'an is strongly suggested if this approach is

solution technique closely parallels the one given, will be

covered in footnotes. Note 3—The samevalues ofm andr provide minimum variance for
6.2 Component Variances Are Known given cost. When these are inserted into the cost function, it is seen to be
6.2.1 If the variance constraint is expressed as a maximurp{oportlonal ton, so thatn should be chosen as large as the cost constraint
- . . . . will allow.
value for the width, A, of a confidence interval fq, it can be _ _ o _
transformed immediately to a maximum value éog, by using 6.2.4 An example with further discussion is given in Ap-
the relationship pendix X3.

6.3 Component Variances Are Not Known

A= Gy ° 6.3.1 The approach to finding values for m, and r
©) described in Appendix X2 is also valid when the basic
where: variances are not known, provided some estimates of these
Z, > = value having a probability/2 of being exceeded by a variances are available. As in 6.2, values fioandr can be
standard normal variate. obtained from estimates of the variances and cost factors.

Therefore, ifA is limited toA , say, thens 5is limited toA /  There is a complication in the calculation of an optimum value
Z,_qs2- Since the minimum cost is achieved when the constraingf n, however: since the final uncertainty will be based not on
is barely satisfied, we need to minimize cost subject to thenhe true variances but rather on estimates, titlistributiorf

constraint must be used instead of the Normal. Given the allowable
o =K o) half-width A, we have
whereK is a constant, either specified directly or computed A= sty op(v) (13)
from A, anda. where:

6.2.2 When the underlying variances are known from pret,_,,»(v) = value having probability/2 of being exceeded by
vious history, the problem of achieving a minimum cost withina “Student’st” variable with degrees of freedom, and s
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p = estimated standard deviation of the mean. , 1(of of

Unfortunately,y depends upon, m,andr (and if prior data are % TN (ﬁ + T) (16)
to be combined with present data in computsgit depends
also upon the degrees of freedom appropriate to those datae)
We therefore proceed iteratively. We guesscalculatev (as
described in 6.3.2), obtairfrom standard tables, and calculate  Note 4—Thorough mixing is very important to give effective homog-
s from Eq 13. We then use this target value and our estimategnizing of the composite samples, thereby reducing the error from
of the basic variances to obtain an optimum valuerfas in ~ Subsampling to a negligibly small value.

6.2.3. If this optimum value is as large as, but not too much 7.3 To further reduce the laboratory effort, thesamples
larger than, the guessed value, it should be used. Otherwisgom each of theN containers in the lot may be composited into
use it in place of the initial guess and repeat the procedure. 5 |ot master sample and thoroughly mixed. The contributions to
6.3.2 The uncertainty in the fingl will be expressed in  the master sample from each of thecontainers should be
terms of an estimated varianeg®. Thet-factor used witts 5 proportional to the net weights in the corresponding containers.
in Eq 13 has been shown to be approximately correct, provideg sub-sample (Note 5) of the composite is then analyzed

the degrees of freedom parameter, is properly chosen. times. The variance of the sample mean is given by
Satterthwaite’s formula is applicable, whether or not the data

The laboratory effort is still rather large, since evenrfer 1
‘total of Nr = N measurements must be made.

. . . 2 2
from a prior experiment are to be used. In the simple case GBZZU_SJF‘TL (17)
where only then X m X r data values under consideration are Nm =7
used, the formufais Note 5—Dissolution of the material is a step in the laboratory analysis;

2 2 2 2 -1 therefore, the sub-sample must contain an amount of material sufficient for
—gt N-=n ﬁ + i & (14) further subdivision inta portions
VESp\nmmiN) n—17 \mN) nim—1) '

When prior data are combined with these data, the formula /-4 For this latter case, it is shown in Appendix X4 that the
is more complicated. values ofm andr that minimize “cost” for a given variance

6.3.3 Whem andm are both greater than one, the approachPeundk are
given here leads to an unbiased estimate g? .If norm, or 05 (\/Ca0 o+ \/CsO g
both, are chosen to be one, then the corresponding mean m:N<k—\/ES>'a”d (18)
square(s) (Appendix X1) are undefinednlt= 1, no estimate \V/Coat Vo
of o 5 is available. Ifn > 1 and m= 1, then only an r=o, (%) (19)
overestimate of 5 2 is available: (Idmr) MS, has expected a
value (o,/n) (N/(N = 1)) + (¢ Z/nm) + (a,2/nmr), in which the Finally, the minimum cost is given by
first term is too big by the factofN/(N — 1)). Therefore, in 1
order to avoid this problem, it is desirable to choosgreater minimum cost= - (\/C, 0, + \/C; 09’ (20)
than one; and unlessis large, also choosm greater than one.

(Note 6)

7. Compositing Samples Note that, while Eq 18 and Eq 19 give andr, the values

7.1 In the example of Appendix X3 at least seven samplesvill not generally be integers. If the values are rounded to
and seven laboratory analyses (measurements) were neededrtegers, then Eq 20 is not appropriate for calculating the actual
reduce the variance of the sample mean to the specified valueost corresponding to the chosenandr. Instead, the cost
Laboratory measurements are usually costly and time consumvould be calculated as, Nm+ c,r.
ing. Sampling operations, on the other hand, are relatively o ) o ] )
inexpensive from the viewpoint of required instrumentation Note 6—I_f it is desired to minimize the variance for given c&tthe

. . ....same technique leads to
and operator time. Furthermore, in many SNM accountability
situations the variance components due to between- and mN\/C; /¢, C
within-container variabilities are not known with the same s %2 A\/[Go +\/Co, and
degree of confidence as the laboratory variance. To reduce the
effort in the laboratory and to minimize the random error, it
could be desirable to bl_end _samples to _form a comp_osite. minimum Varianctté (/G 0a + \/C 0 22)
7.2 When each container in a gt = N) is sampledntimes

with r analyses per sample, the finite population correction 7.5 An example with further discussion is given in Appen-

(21)

the minimum variance is given by

factor in Eq 3 becomes zero and Eq 3 becomes: dix X5.
1 /62 g2 1 5.2 7.6 Compositing in this way has a major drawback, in that
2 =) = 2, 7a (15) e . . 2 . . .
% =N \m Tmr Nm\ % T it is impossible to estimate, <, the within-container variance,

on a continuing basis. Quite possibly.’2 may change,
especially if there has been a change in process conditions or
supplier. Periodically, and especially at those times when a
change inr 2 might be expected, a number of samples may be
drawn from each container and analyzed separately in replicate
5 Mendenhall p cit), p. 352; also Jaeclop cit), pp. 157—161. to establish current estimates @f 2 and o 2.

If the m samples from each individual container are com-
posited and thoroughly mixed (Note 4) and each of khe
composites is analyzedtimes, Eq 15 is replaced by:
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8. Mechanical and Physical Aspects of Sampling 8.2.2 Bias occurs when, in addition to the random errors, all

8.1 The common types of nuclear material encountered ar@easured values are shifted consistently from the true value in
liquid and solids (powder and pellets). In whatever formthe same direction. Likely sources of bias are improper
encountered, the principal task in sampling is to remove &ampling procedures, faulty sampling devices, and improperly
sample that is typical of the bulk material, at least as far as thealibrated instruments. The problem is to detect the existence
parameters of interest are concerned. The selection of a@f such biases and to account for them in the results. The
procedure and equipment for sampling must be made based gplution to this problem usually requires designing an appro-

factors such as the following: priate study’ This may not always be possible. For example, if
8.1.1 Type and form of the.material, the sample were contaminated to an unknown degree and new
8.1.2 Degree of homogeneity, samples are not available, it may be impossible to estimate the
8.1.3 Stability of the material, bias.
gig IF_’ocatlon of :jhe mgterlal,t f Ivzing th eri 8.2.3 An example of errors due to chemical or physical
d. ' urpose and requirements for analyzing the ma e”althanges occurs with plutonium dioxide powddihis material,

an . . . . which is usually handled as a fine powder with a large surface
8.1.6 Accessibility for sampling all units or containers L . .

. area, readily picks up or loses water if exposed to a change in

involved. - ) o ) .

humidity. Plutonium dioxide powder can gain over 1% in

8.1.7 Practice E 300 and NUREG/CR-0087 present prin- """ ht withi ‘ h i d . .
ciples and guidelines for sampling materials. The mechanical’®'9 t within a few hours I exposed to an Increase in
and physical aspects of sampling are discussed. NUREG/cpumidity. Therefore, very careful control over conditions must

0087 addresses sampling nuclear materials to determine thdlf €stablished and maintained when sampling this material,
chemical and isotopic contents. particularly if it is relocated and then sampled.

8.2 Some Sources of Error

8.2.1 There are various sources of error in the sampling
process such as nonhomogeneity, contamination of the sample
after removal from the bulk material, failure of the equipment,

failure of the operator to follow the procedure, bias, and °Stephens, F. B., et aMethods for the Accountability of Uranium Dioxide
i R R R R B UREG-75/010, pp. 1-17, U. S. Nuclear Regulatory Commission, National
chemical and physical changes in the material during sampllnq\.' chnical Information Service, Springfield. VA, 1075,

The latter two sources of error are discussed b”eﬂy in8.2.2and - Gutmacher, R. G., et aMethods for the Accountability of Plutonium Dioxjde
8.2.3. USAEC Report WASH-1335, 1974.

APPENDIXES
(Nonmandatory Information)

X1. ESTIMATION OF VARIANCES IN A NESTED ANALYSIS OF VARIANCE DESIGN

X1.1 Let Xy be thekth measurement on thigh sample  samples MS, = [n(m-1] o2+ o2
from theith containerk =1, ..., r;j=1, ..., m;i=1,..,n T EM (K = X X
Let Analyses MS, = [L/nm(r - 1)] B 0,
e TS S e (X X)?
X;. = é Xijo ;ﬂ_ :% X, (X1.1) Notg that factor [\/(N - 1)] is due tq Fhe finite numbgr of
k=1 containers. From the preceding table, it is seen that estimates of
nod 1 the variances are as follows:
Xi“ = 'Zlkgl Xijk’ _XI_ = ﬁ, )(1, and (XlZ)
i s2=MS, (X1.4)
n m r _ 1 1
Xo= 22,2 Ko X S hme X (X1.3) 87 =7 (MS ~ MS), and (XL5)
X1.1.1 Then the mean squares may appear in a nested » N-1
. . =—<— (MS, — MS). X1.6
analysis of variance (ANOVA) table as follows: % = Nmr MS MY (X1.6)
Source Mean Square Expected Value of X1.1.2 In practice the latter two estimates could be negative
Mean Square . . . . . . .
Containers  MS, = [mr(n-1)] _ [mNIN - 1o, which would require modification of this estimation proce-
CE- (X - X )P +1o 3+ 0, dure?
Expected Value of

Source Mean Square Mean Square
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X2. FINDING THE OPTIMAL VALUES OF r AND m FOR MINIMIZING “COST” SUBJECT TO THE
CONSTRAINT THAT o p2= K (see 6.2)

X2.1 The total costof sampling and analysis is not linear ¢, = marginal cost of an additional laboratory analysis.
(|n n, m, and r) over the whole range of these variables. Then applying the Lagrange multiplier technicﬂm/,e con-
However, in the neighborhood of the optimum, a linearsider the expression

approximation is likely to be reasonable. Write the variable

part of the cost as

c=cynh+csm +c,r’ (X2.1)
where:

mn,

nmr and, as in 6.2.2,

q
[T

Co marginal cost of choosing one additional containe
and preparing it for sampling,
¢, = marginal cost of drawing an additional sample from a

container and preparing it for analysis, and

8 Cost need not be monetary.

L=C+\oy —K), (X2.2)
where (see Eq 3, S5.2):
2 2 2
> 0, N—n o Oy
T mN—I W T (X2.3)

Taking partial derivatives with respect t6, m', n, and \,

¢ setting them equal to zero, and solving fogives

C C. cp,N—-1
N=—22= Sm?= 0 N (X2.4)
Oa s Op

From this it follows that the optimum andm are given by

1 oy(C\1/? q 9
r_W_O'_SC_a , an (X 5)
~m og/gN—1\1/2
m—F G_b<cs N (X26)

® Mendenhall,op cit, p. 355.

X3. EXAMPLE

X3.1 Find values ofn, m, and r that meet a variance
constraint and minimize “cost” (6.2.4). L&t = 20;0, = 0.3;
o= 0.1; ando , = 0.04. Fora = 0.05,Z,_,,», = 1.96 and if
A = 0.2, the target value far ;* is given by:

0.2
—= = 0.0104

K=o = 1o

(X3.1)

From Eq 3in X2,r = 0.04¢, "
q T 01 ¢

which is close to 1 whenever 5 %ca < 10. Since the cost of

sampling is unlikely to be more than ten times the cost of a

analysis and since= 1, r will usually be taken equal to one.
0.1
Likewise,m = T,)(cb/c,S X 19/ 20)1/2 , which is close

to 1 whenever 8 <% < 15. Sincem = 1, mwill usually be
taken to be one. With = m= 1,

, 0.0920—n 0.01 0.0016
0.10633
= — 0.00473; (X3.3)

n
settingo 5° = 0.0104, we obtaim = 7.03.

sample analyzed once to obtain the target value of 0.0104 for
o 52 and therefore meet the specified confidence interval width
(2A) of 0.4. The seven containers must be selected at random,
that is, each of the 20 containers is assigned one of a sequence
of numbers and a random number table is used to select the
seven containers.

X3.3 Note that in this case, the variance term involving

only n namely °®#N-%-1 , is greater by itself than the
variance bound of 0.0104, unless= 7; and the other terms
feontribute so little that fon = 7, the total variance is down to
the required value even fon = r = 1. Therefore, §) we need
n= 7 and p) oncen = 7, mandr do not need to be any larger
than their minimum value, so these optimum values are really
independent of the costs. This will not always be so, of course.

X3.4 Significant improvements in the varianees 2 can
sometimes be achieved with small additional cost by judi-
ciously choosing values fon, mandr. This is apparent by
comparing the setm=7, m=2, r=1andn= 14, m=1,
r=1. In both situations 14 sampling operations and 14
analyses are required, that is, the total effort is about equal.

Thus the required variance is (approximately) achieved byiOWever, for the second sen(= 14), the variance is 0.0029,
takingn =7, m=r = 1. which is lower by a factor of three than for the first set

(n 7), which has a variance of 0.0096. Therefore, the set
X3.2 The previous paragraph shows that at least 7 contairwith n = 14 is preferred, unless the cost of choosing additional
ers out of the 20 must be selected, sampled once, and eacbntainers is quite large.
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X4. FINDING THE OPTIMAL VALUES FOR r AND m—COMPOSITE SAMPLE CASE (7.4)

X4.1 Selection ofm andr to minimize cost for a given cNn?
variance boundK is achieved by the Lagrange multiplier A= o2 o2
technique that was used in Appendix X2. The function to be ,
considered is Then, usings?nm + 2% = K, the values fomandr can be
) ) given in symmetric form as
[N [
L=cSNm+car+)\<m+Ta—K> (X4.1) mN\/Esir\/C—ai'\/FaUa+\/EsUS X4.2)
Setting the partial derivatives with respectrnoandr equal % 7a K
to zero, and solving fok yields
X5. EXAMPLE
X5.1 Find values omandr that meet a variance constraint  so that
and minimize “cost’—composite sample case (7.5). 300% 0.1
: . =——=——=15 X5.2
X5.1.1 A lot consists oN = 20 containers. m 20 (X5.2)
Let 300 0.05
r=—-7,— =375 (X5.3)
¢2 = 0.01 X5.1.1.2 The minimum cost is found to be 90 unitsn&nd
o, = 0.0025 r are rounded up to 2 and 4, the actual cost is, of course,
cc =1 unit. 1X 20X 2+ 16-4= 104 units, and the actual variance is
C; = 16 units 0.000875. If instead of compositing, one sample were taken
X5.1.1.1 Suppose the variance @ is not to exceed from each container and analyzed, the cost would be 340 units,
k = 0.001. Then, from X4, and the variance would be 0.000625.

mN 4 02+0.1

01005 0001 390 (X5.1)
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