ANNEX A: Elastic Displacement Response Spectrum (43)

A.1.1 For periods of long vibration period, the seismic action may be represented in the form of a displacement response spectrum, $SD_e(T)$, as shown in Figure A.1.

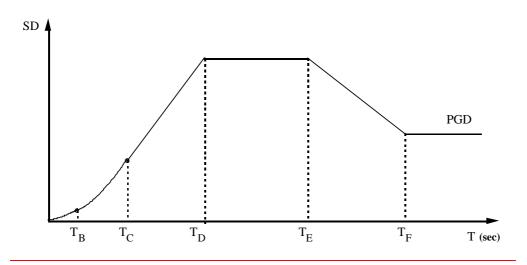


Figure A.1. Elastic displacement response spectrum.

A.1.2 Up to control period T_E , the spectral ordinates are obtained from Eqs.(4.1)-(4.4) coverting $S_e(T)$ to $SD_e(T)$ through Eq.(4.6). For vibration periods beyond TE, the ordinates of the elastic displacement response spectrum are obtained from Eqs.(A.1) and (A.2).

$$T_{E} \leq T \leq T_{F}$$

$$SD_{e}(T) = a_{g}.S.T_{C}.T_{D} \left[0.4\eta + \left(\frac{T - T_{E}}{T_{F} - T_{E}} \right) (0.025 - 0.4\eta) \right]$$
(A.1)

$$T \ge T_F \tag{A.2}$$

$$SD_e(T) = d_g$$

where S, T_C , T_D are given in Table 4.1, γ is given by Eq.(4.5) and d_g is given by Eq.(4.11). The control periods T_E and T_F are presented in Table A.1.

<u>Table A.1. Additional control parameters for Type 1 displacement spectrum.</u>

Sub-soil Class	<u>T</u> _E	<u>T</u> _E
<u>A</u>	<u>4.5</u>	<u>10.0</u>
<u>B</u>	<u>5.0</u>	<u>10.0</u>
<u>C</u>	<u>6.0</u>	<u>10.0</u>
<u>D</u>	<u>6.0</u>	<u>10.0</u>
<u>E</u>	<u>6.0</u>	10.0